Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365244

RESUMO

Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.


Assuntos
Microbiota , Alga Marinha , Bactérias/genética
2.
Appl Environ Microbiol ; 87(24): e0186021, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613759

RESUMO

The mechanisms controlling entry into and exit from the death phase in the bacterial life cycle remain unclear. Although bacterial growth studies in batch cultures traditionally focus on the first three phases during incubation, two additional phases, the death phase and the long-term stationary phase, are less understood. Although there are a number of stressors that arise during long-term batch culture, including nutrient depletion and the accumulation of metabolic toxins such as reactive oxidative species, their roles in cell death are not well-defined. By manipulating the environmental conditions of Escherichia coli incubated in long-term batch culture through chemical and mechanical means, we investigated the role of volatile metabolic toxins in modulating the onset of the death phase. Here, we demonstrate that with the introduction of substrates with high binding affinities for volatile compounds, toxic by-products of normal cell metabolism, into the headspace of batch cultures, cells display a prolonged stationary phase and delayed entry into the death phase. The addition of these substrates allows cultures to maintain a high cell density for hours to days longer than cultures incubated under standard growth conditions. A similar effect is observed when the gaseous headspace in culture flasks is continuously replaced with sterile air, mechanically preventing the accumulation of metabolic by-products in batch cultures. We establish that toxic compound(s) are produced during the exponential phase, demonstrate that buildup of toxic by-products influence entry into the death phase, and present a novel tool for improving high-density growth in batch culture that may be used in future research or industrial or biotechnology applications. IMPORTANCE Bacteria, such as Escherichia coli, are routinely used in the production of biomaterials because of their efficient and sustainable capacity for synthesis of bioproducts. Industrial applications of microbial synthesis typically utilize cells in the stationary phase, when cultures have the greatest density of viable cells. By manipulating culture conditions to delay the transition from the stationary phase to the death phase, we can prolong the stationary phase on a scale of hours to days, thereby maintaining the maximum density of cells that would otherwise quickly decline. Characterization of the mechanisms that control entry into the death phase for the model organism E. coli not only deepens our understanding of the bacterial life cycle but also presents an opportunity to enhance current protocols for batch culture growth and explore similar effects in a variety of widely used bacterial strains.


Assuntos
Técnicas de Cultura Celular por Lotes , Escherichia coli , Compostos Orgânicos Voláteis/isolamento & purificação , Ciclo Celular , Escherichia coli/crescimento & desenvolvimento , Microbiologia Industrial
3.
Nat Microbiol ; 5(8): 1026-1039, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451471

RESUMO

Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.


Assuntos
/metabolismo , Polissacarídeos/metabolismo , Verrucomicrobia/enzimologia , Verrucomicrobia/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Esterases , Genes Bacterianos/genética , Glicosídeo Hidrolases , Redes e Vias Metabólicas , Metagenoma , Filogenia , Proteoma , Especificidade por Substrato , Sulfatases , Sulfatos/metabolismo , Transcriptoma , Estados Unidos , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
4.
J Bacteriol ; 200(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632094

RESUMO

While most Vibrionaceae are considered generalists that thrive on diverse substrates, including animal-derived material, we show that Vibrio breoganii has specialized for the consumption of marine macroalga-derived substrates. Genomic and physiological comparisons of V. breoganii with other Vibrionaceae isolates revealed the ability to degrade alginate, laminarin, and additional glycans present in algal cell walls. Moreover, the widely conserved ability to hydrolyze animal-derived polymers, including chitin and glycogen, was lost, along with the ability to efficiently grow on a variety of amino acids. Ecological data showing associations with particulate algal material but not zooplankton further support this shift in niche preference, and the loss of motility appears to reflect a sessile macroalga-associated lifestyle. Together, these findings indicate that algal polysaccharides have become a major source of carbon and energy in V. breoganii, and these ecophysiological adaptations may facilitate transient commensal associations with marine invertebrates that feed on algae.IMPORTANCE Vibrios are often considered animal specialists or generalists. Here, we show that Vibrio breoganii has undergone massive genomic changes to become specialized on algal carbohydrates. Accompanying genomic changes include massive gene import and loss. These vibrios may help us better understand how algal biomass is degraded in the environment and may serve as a blueprint on how to optimize the conversion of algae to biofuels.


Assuntos
Adaptação Fisiológica , Alga Marinha/microbiologia , Vibrio/fisiologia , Metabolismo dos Carboidratos/fisiologia , Carboidratos/classificação , Regulação Bacteriana da Expressão Gênica , Genômica , Interações entre Hospedeiro e Microrganismos , Transcriptoma
5.
Environ Microbiol ; 19(6): 2422-2433, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28419782

RESUMO

Heterotrophic bacteria exploit diverse microhabitats in the ocean, from particles to transient gradients. Yet the degree to which genes and pathways can contribute to an organism's fitness on such complex and variable natural resource landscapes remains poorly understood. Here, we determine the gene-by-gene fitness of a generalist saprophytic marine bacterium (Vibrio sp. F13 9CS106) on complex resources derived from its natural habitats - copepods (Apocyclops royi) and brown algae (Fucus vesiculosus) - and as reference substrates, glucose and the polysaccharide alginate, derived from brown algal cell walls. We find that resource complexity strongly buffers fitness costs of mutations, and that anabolic rather than catabolic pathways are more stringently required, likely due to functional redundancy in the latter. Moreover, while carbohydrate-rich algae requires several synthesis pathways, protein-rich Apocyclops does not, suggesting this ancestral habitat for Vibrios is a replete medium with metabolically redundant substrates. We also identify a candidate fitness trade-off for algal colonization: deletion of mshA increases mutant fitness. Our results demonstrate that gene fitness depends on habitat composition, and suggest that this generalist uses distinct resources in different natural habitats. The results further indicate that substrate replete conditions may lead to relatively relaxed selection on catabolic genes.


Assuntos
Copépodes/microbiologia , Fucus/microbiologia , Aptidão Genética/genética , Vibrio/crescimento & desenvolvimento , Vibrio/fisiologia , Alginatos/metabolismo , Animais , Genoma Bacteriano/genética , Glucose/metabolismo , Mutação , Vibrio/genética
6.
Nat Commun ; 7: 12860, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653556

RESUMO

Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Pathway architecture is predictive of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes.

7.
Genetics ; 194(2): 409-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589461

RESUMO

Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , Aptidão Genética , Resposta SOS em Genética , Adaptação Fisiológica/genética , Proliferação de Células , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Mutação , Transcrição Gênica
8.
J Proteome Res ; 3(6): 1120-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15595720

RESUMO

Two-dimensional differential gel electrophoresis (2-D DIGE) was used to analyze human serum following the removal of albumin and five other high-abundant serum proteins. After protein removal, serum was analyzed by SDS-PAGE as a preliminary screen, and significant differences between four high-abundant protein removal methods were observed. Antibody-based albumin removal and high-abundant protein removal methods were found to be efficient and specific. To further characterize serum after protein removal, 2-D DIGE was employed, enabling multiplexed analysis of serum through the use of three fluorescent protein dyes. Comparison between crude serum and serum after removal of high-abundant proteins clearly illustrates an increase in the number of lower abundant protein spots observed. Approximately 850 protein spots were detected in crude serum whereas over 1500 protein spots were exposed following removal of six high-abundant proteins, representing a 76% increase in protein spot detection. Several proteins that showed a 2-fold increase in intensity after depletion of high-abundant proteins, as well as proteins that were depleted during abundant protein removal methods, were further characterized by mass spectrometry. This series of experiments demonstrates that high-abundant protein removal, combined with 2-D DIGE, is a practical approach for enriching and characterizing lower abundant proteins in human serum. Consequently, this methodology offers advances in proteomic characterization, and therefore, in the identification of biomarkers from human serum.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Eletroforese em Gel Bidimensional/métodos , Proteômica/métodos , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Corantes Fluorescentes , Humanos , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...